)

Rick Jellifte://From Grammars to...

The Schematron

Copyright (C) 1999 Rick Jelliffe



Information is Molecular!

When one atom of information
requires another piece to give it meaning,
we say there is cohesion between these atoms.

For example, to know some sige information,
we need some number and some unit of measurement.



Data 1s Structural!

When we represent information as data
in a computer, we create structures to represent it.
These structures couple data together in various ways.

For example,
in an XML document,
two atoms of data may be coupled
as an element with an attribute,
or as two elements under the same parent element,
or as parent and child elements.



Data Stuctures are Models

The way that data is coupled may not reflect the actual cohesion of the
information.

For example, in a relational database data must be put in tables, in
well-formed XML data must fit into trees. This 1s useful, because
adopting an appropriate modeling discipline may have nice implemen-
tation properties.

But we are no longer representing the information; we are trying to
model it within the constraints of the tools we are using.



Kinds of Cohesion

» Strong cohesion is where one piece of information is necessary for
another to be useful.

e Weak cohesion 1s where one piece of information may relate to ono-
ther, but it is not necessary.

* Neutral cohesion is where one piece of information does not effect
another.

* Repulsion is where one piece of information diminishes the useful-
ness of another.

Note that cohesion may be equally strong in both directions.



Kinds of Coupling

Strong coupling is where one piece of data is structurally tied to

another.
Weak coupling is where one piece of data may be structurally tied to

another.
Rejection is where one piece of data must not be coupled to another.



What 1s a Structural
Schema?

A structural schema
1s an attempt to model
the kinds of information cohesion using
the kinds of data coupling available in
a particular paradigm.



DT1TDs

A DTD uses the paradigm of a regular grammar.

The kinds of coupling available are:

parent—>child strong coupling: a required subelement;

parent—>child weak coupling: an optional subelement or group; an element
declared ANY is a shorthand for weak coupling to all other elements in the
schema;

sibling—>next sibling strong coupling, in the context of a particular group in a
particular parent: sequences;

sibling—>sibling rejection though alternatives (i.e., |, when not directly inside a
group with a * or +);

sibling—>next sibling weak coupling, in the context of a particular group in a par-
ticular parent: repetition;

parent—>child rejection: an element declared EMPTY rejects all other elements.



Limits to Grammars

All kinds of information cohesion must be represented through these available
kinds of data couplings.

A strong cohesion between two pieces of information that are modeled as grandpar-
ent and grandchild elements requires grandparent—>grandhild coupling. In DTDs,
this must be expressed through a strong parent—>child coupling of from the grand-
parent, and then a strong parent—>child coupling to the child.

In particular, rejection and neutral coupling are only model implicitly, as the result
of modeling strong and weak parent—>child coupling.



Tree Patterns

The Schematron uses the paradigm of tree—patterns. These can model:

e x->x strong coupling, in the context of a pattern: the asssert statement ;

e x—>Xx rejection, in the context of a pattern: the report statement;

where x->x can include any relationship expressible by starting from a location
given by an XPath path in a document and evaluating an XPath expression from that
location. This includes ancestor—>descendent, cousin—>cousin, and even graph rela-
tionships expressed using IDs or keys.



Grammars versus
The Schematron

* Tree-patterns allow more one-to-one relationships of data coupling to be
directly specified; in turn this means that more kinds of information cohesion
can be directly modelled;

e Grammars allow, through the grouping mechanism, more kinds of complex lin-
ear patterns to be specified;

e Grammars cannot express any relationships that cannot be reduced to chains of
parent-child or sibling->nextSibling relations;

So we can say that a grammar based system is mainly interested in defining an ele-

ment and the things that it can contain: the subject is the element and the vocabu-

lary is the content model: groups, optionality, repitition.

A Schematron schema is interested in how an element fits into a pattern, which
may include coupling or rejection from any other part of the data structure: the
subject is the pattern and the vocabulary is the path and the expression.



Converting a DTD to a
Schematron Schema

First, create a list of all element types used in the DTD.

Then for each element type in the DTD:

create a single rule in your Schematron schema;

add an assert statement for each required element type in the content model
and each required element: this just tests the child axis;

if the element is EMPTY or only (#PCDATA), generate a report element that
tests is there is any element content;

for each element type in the content model add the name of the parent element
to a list of allowed parents;

add a report statement that tests the parent axis for any element that is in the
list of all elements but is not in the list of allowed parents.

The effect is that we test for all strongly coupled children and all rejected parents
and all explicity rejected children. (Note that this procedure can be performed
automatically.)



Improving the Conversion

There are several simple improvements that can be made:

* keep track if there is a fixed number or range of occurrences of an element type
in a content model, and make a test for this;

* create assert statements testing the element type against a fixed position, for
each required and non-repeating elements in the content model in the DTD,
starting from the start and ending when some repeating or optional element
type occurs;

* Lkeep track of each element type that can possibly follow another element type
in the content model, and make assert statements: this will have to be in a sepa-
rate pattern, the context of each rule must specify the parent/child where the
parent is the element type being defined and the child is the element that may
be followed--there would be one assert statement testing all possible next sib-
lings.



Result

The first conversion in effect gives us the equivalent of a weaker validation of the
DTD’s content models. It 1s the same as disallowing groups and replacing ? with *,
adding + everywhere else, and replacing , with SGMLs &. Note however that we
have gained openness: an element from outside the DTD will not generate an error,
except in an EMPTY element or one with data content only.

The improvements gives us much more of the power of regular grammars, remem-
bering that content models for XML tend to not have complex sequence require-
ments; the rules about when #PCDATA can be used and the lack of the & indicator
are disincentives for intricate content models compared to SGML.

(These steps can also be automated.)



Finally

As a last step, you can add by hand the kind of information that a DTD cannot
express: notably which elements are allowed to be at the root of a document, which
elements should not contain themselves (SGML global exclusions). If the DTD
was an SGML DTD, many global inclusions can be modeled by asserting a rejec-
tion on the element if the required ancestor is not present. You may find that many
of these DTD-derived rules hide more expressive patterns.

A Schematron schema is based on a different paradigm than grammars: each is use-
ful, but each can only incompletely simulate the other. For the simplest data, data-
base records with fixed structures, this data only requires strong parent—>child
coupling: both grammars and Schematron schemas will be equally powerful.

The aim of a structural schema is to model information cohesion in the data cou-
pling. While there is a lot over overlap, both grammars and tree-pattern schema
languages excell at different structures. Is it possible that in the world of
namespace, open content models and data islands, the tree-grammar may be a
more useful paradigm than the regualr grammar?



